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Abstract 0 A nondestructive technique, dynamic mechanical testing, was 
used to characterize the viscoelastic properties of dispersions of powdered 
starch in anhydrous lanolin. The elastic shear modulus (G’), viscous shear 
modulus (G”), and loss tangent (damping; tan 6) were determined as a 
function of shear frequency, temperature, and the volume fraction of starch. 
The results of these studies show that constitutive mathematical models, de- 
rived to predict the mechanical behavior of solid-filled polymeric materials, 
can be applied to solid-filled semisolid pharmaceuticals. In particular, the 
Kerner equation was useful in describing the influence of starch on the G’ of 
the dispersions. Even though the Kerner equation was unable to predict vis- 
coelastic behavior at all shear frequencies, temperatures, and starch volume 
fractions, it proved beneficial in postulating mechanisms for starch-starch 
and starch-anhydrous lanolin interactions within the dispersions. In addition, 
damping was able to differentiate the influence of temperature. Data obtained 
from three temperature ranges, where anhydrous lanolin exists in three dif- 
ferent structural states, shows that the influence of starch on damping is 
dictated by the structural state of anhydrous lanolin. 
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Pharmaceutical and cosmetic products are commonly het- 
erogeneous dispersions of solid particles in liquid or semisolid 
vehicles. Usually, their rheology is studied with rotational, 
continuous shear viscometers ( I  -4). But unfortunately, con- 
tinuous shear viscometers destroy the microcrystalline or 
amorphous three-dimensional networks that determine basic 
rheological properties and introduce the parameter of variation 
of structure with time. These viscometers are capable of de- 
termining the viscosity of Newtonian systems, but they are 
unable to determine fundamental viscoelastic parameters such 
as elastic or viscous moduli (5). 

Semisolids in particular have been shown to exhibit complex 
rheological behavior and are generally classified as viscoelastic 
( 6 ) ,  i.e.,  they exhibit spontaneously reversible deformation 
called elasticity and irreversible deformation called flow. To 
accurately characterize the viscoelasticity of a semisolid, the 
method of testing must minimize damage to structure that 
determines rheological properties. One such nondestructive 
method, dynamic mechanical testing, has been successfully 
used to characterize the viscoelastic properties of the hetero- 
geneous semisolid anhydrous lanolin as a function of temper- 
ature and shear frequency (7 ,8) .  

Because of the extensive use of solids suspended in ointments 
in the past and present, it would be invaluable to know the ef- 
fect of suspended particles on the apparent viscoelastic prop- 

erties of the ointment and to understand the phenomena as- 
sociated with any observed changes. Despite the obvious im- 
portance of this type of information, there has been, up to now, 
a lack of information in the literature that examines the effects 
of powdered fillers on the viscoelastic properties of pharma- 
ceutical semisolids. 

This study was therefore initiated and showed that powdered 
fillers can have a significant influence on the viscoelastic 
properties of pharmaceutical semisolids. Data that relate 
temperature, shear frequency, and the volume fraction of 
starch to changes in viscoelastic moduli are presented for 
dispersions of starch in anhydrous lanolin. In addition, it is 
shown that mathematical models, which have been successfully 
used to predict viscoelastic moduli of powder-filled high 
polymers, can also be applied to powder-filled pharmaceutical 
semisolids to interpret changes in viscoelastic moduli in terms 
of interactions between the powder and the surrounding 
semisolid phase. 

BACKGROUND 

Unfortunately, the viscoelastic and mechanical properties of powder-filled 
pharmaceutical semisolids are not well understood, especially when the par- 
ticles of powder interact among themselves or with the surrounding semisolid. 
Therefore, it is pertinent to this report that selected literature dealing with 
the rheological aspects and mechanical properties of suspensions of solid 
particles in nonaqueous media be reviewed first. In particular, emphasis will 
be placed on literature that deals with the mechanical properties of suspensions 
of solid particles in polymeric materials. 

The flow behavior of suspensions of rigid particles in liquids is important 
because most theories of the moduli of composites have their origin in the 
theory of the viscosity of suspensions. Einstein’s equation for the viscosity of 
a suspension of spherical particles is fundamental to the theory (9, 10): 

V / V l  = 1 -I k e h  (Eq. 1) 

The apparent viscosity, 7, is related to the viscosity of the suspending media, 
71, the Einstein coefficient, k,, and the volume fraction of the suspended phase, 
$zl. When $2 << 1 and the spheres are noninteractive, k ,  = 2.5. Equation 1 
holds only for very dilute suspensions. Attempts to extend the validity of this 
equation are  numerous ( 1  1). 

One of the most useful extensions is the Mooney equation (12): 

In ( V / V I )  = ke$z[l/(l - $dd~rn)l (Eq. 2) 

where brn is the maximum volume fraction that the particles can attain when 
packed2. Equation 2 is a constitutive equation which adequately describes the 
viscosity of many kinds of suspensions over a wide range of concentrations. 

I 92 is equal to the volume occupied by the particles divided by the total volume of the 

2 $,,, is equal to the true volume of the particles divided by the apparent volume occupied 
suspension. 

by particles. 

590 I Journal of Pharmaceutical Sciences 
Vol. 73, No. 5, May 1984 

0022-3549/84/0500-0590$0 1.00/ 0 
@ 1984, American Pharmaceutical Association 



2- c 
2-? 

B 
2 y  A 

0 

(7 

0 8  
# 

A 

0 0 
0 

- 
I I I I I 1 I 1 I 1 I I I 1 I I I I 1 1 
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 

@2/91  

02l01 01/91 
Figure 1 -EffPct of the volume fraction of starch on the elastic moduli of starch-jllled anhydrous lanolin USP dispersions, plotted on Kerner axes, at 3.54% 
strain and 0.0464 (A), 0.464 (BI, and 4.64 (C) Hz.  Key: (0) O'C; ( A )  10°C; (+) 15°C: (@) 20°C; (-) ideal Kerner equation prediction when p~ = 0.5. 

Theoretically, 4m is 0.74 for spheres in hexagonal close packing, but generally 
the value is much less becausc of irregularities in particle shape and parti- 
cle -particle interactions. Viscosity generally increases rapidly with concen- 
tration and state of aggregation. The Einstein coefficient has been estimated 
for shapes other than nonagglomerated spheres, including roughly spherically 
shaped agglomerates of rigid spheres (13).  Irregularities in shape generally 
increase k ,  values. 

With high concentrations of particles, suspensions becomc non-Newtonian 
and viscosity becomes a function of shear rate, i.. For non-Newtonian sus- 
pensions that show a decrease in  9 with an increase in +, the Cross equa- 
tion: 

9 = 9- + (90 - v.=)[ l / ( l  + Q?m)l (Eq. 3) 

often holds (14. 15) .  The constants R and m depend on the system, while 90 
is the viscosity at zero shear rate and 7- i s  the viscosity at high shear rates. 
It is generally assumed that the shear rate dependence of viscosity seen in these 
systems is due to structural changes in  the suspension. such as the breaking 
u p  of agglomerates by shearing forces. Other shear-dependent theories have 
bcen proposed by Krieger and Dougherty (16) and Gillespie (17, 18). 

For a given instrument, the theoretical equations for shear viscosity and 
shear modulus should be of the same form for a given instrument geometry 
(19,20). Therefore, shear strain in the modulus equation replaces shear rate 
in the viscosity equation. For a dispersion of a rigid filler in a viscoclastic matrix 
phase with a Poisson's ratio3, p, equal to 0.5, the relationship between relative 
viscosities and relative shear moduli can be expressed as: 

TI91 = GIG1 (Eq. 4) 

whcre G is the shear modulus of the disperse system and GI is the shear 
modulus of the unfilled matrix phase. Consequently, the same theory that is 
used to determine the viscosity of a disperse system can be used to estimate 
ifs shear modulus. For example, GIG, can be substituted for T J / T ~  in Eqs. 1 
or 2 to yield corresponding equations for the relative shear modulus. I t  should 
be noted that the correlation between the relative viscosities and relative shear 
moduli expressed by Eq. 4 breaks down when p is <0.5. Fortunately, a theo- 
retical equation has been developed which compensates for this condition (22). 
I n  addition, if the rigidity of the dispersed phase is not much greater than that 
oi the matrix. Eq. 4 is not applicable, as the modulus ratio will be substantially 
less than the viscosity ratio. Actual moduli. lower than predicted, can occur 
becausc ( a )  the Poisson's ratioof the matrix is <0.5, ( h )  thermal stresses re- 
duce the apparent modulus. or (c) the modulus of the filler is not significantly 
greater than the modulusof the matrix. On the other hand, when the matrix 
is a rigid material, thc Mooney equation (Eq. 2) predicts shear moduli which 
are 100 high ( 2 3 ) .  

Another constitutive equation that can be used to predict the modulus of 
a dispersion is the Kerner cquation (24). When the dispersed particles are more 
rigid than the bulk polymer and deformation occurs by shear, the Kerner 
equation can be written as: 

where is Poisson's ratio of the bulk phase and 41, the volume fraction of 
the bulk phase, equals (1  - 42). This equation assumes the particles dispersed 
in  the bulk polymer phase are spherical and that there is good adhesion be- 
tween the particles and the bulk polymer. Good adhesion between the dispersed 
phase and the matrix or bulk phase is assumed to exist if the externally applied 
stress does not exceed the frictional forces between the phases. In many cases 
where adhesion is poor, Eq. 5 holds because there is little if any relative motion 
across the dispersed particle-matrix interface. Viscoelastic response can vary 
dramatically from the case of perfect adhesion to that of no adhesion. Weak 
agglomerates which break under applied stress show many of thecharacter- 
istics of poor adhesion. 

According to theory, the elastic modulus of a composite system is inde- 
pendent of the size of the filler particles, but experimental data indicates that 
there is an inverse proportionality between particle size and modulus (23). 
When the dispersed phase volume fraction is held constant, an increase in the 
elastic modulus of the dispersion may be attributed to an increase in  total 
particle surface area when particle size is reduced. As particle size decreases, 
the tendency for particle agglomeration increases, which causes a corre- 
sponding decrease in maximum packing volume and a resultant increase in 
the elastic modulus. 

I t  has also been demonstrated that the distribution of particle sizes has an 
effect on the moduli and viscosity of suspensions (25--28).  Dispersions of 

' Poiwn 's  ratio. g. I S  an C~LSIIC con\tant which 15 dcfincd for \mall clongaiions as thc 
dccrc.i\c i n  uidth of [he \pccimcn per uni t  width dividco by [he incrcate in length p r  
unit length on the .ipplicalion of a ten\ilc iorce It can be shoun that the relationship 
b l u e e n  p and chmpc in volumc of the \pccimen. A V ,  c3n be expressed a\' p = 0.5 - 
( A V ,  ? t  V O ) .  uhsrc V o  I, the original holume of the specimcn and t is thc iensile force. 
H hcii 31' I\ ,ufficicnl.! &\c l o  x r o .  [he tcrm A V / t ? c  V u )  IS insignificant and cqu.ilc 

I) 5 I hihcondilion hold, for rn.itcrial\wch d \  liquidsand idc.11 rubbcrz Hut uhen A V  
1 3  p i w t i h c .  p dccrcd\c\ IU (0 5. and uhcn A)'  I\ negdtltc. p increaw to >0 5 Alihough 
Ihc cqu.iinon indic.its\ [h i t  g c i n  bc ncg.iiivc uhcn the tcrrn AV, t?cV,)  s >O 5. this docs 
1101 occur undcr sundition5 or sniciII 3tr;iin Lcsting bcc;iu,c AV 13 sm311 compared to 1'" 
(!I) 

Figure 2-Phoromicrograph of a poured thin f i lm of a starch-filled anhy- 
drous lanolin USP dispersion, 91 = 0.802. Original magngication 400X; I 
small division = 3.3 pm.  
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various particle sizes can pack more closely than monosized partides. Con- 
sequently, there is a larger maximum packing fraction and, hence, a lower 
modulus at  a given concentration of dispersed phase. 

In summary, the modulus of the disperse system (or composite) is dependent 
on the ratio of the moduli of the dispersed phase and matrix phase. The larger 
the modulus ratio, the greater is the modulus of the disperse system. This is 
especially true for high concentrations of particles. 

EXPERIMENTAL 

Materials-Anhydrous lanolin USP from the same production lot was used 
in all experiments4. It is a heterogeneous wax designated by the USP to contain 
not more than 0.25% water (25), the chemical composition of which has been 
examined extensively (26,27). Potato starch5, USP grade, was used to make 
the dispersions. When dispersed in anhydrous lanolin, 1 g of starch occupies 
an -0.66-mL volume. 

Apparatus-The viscoelastic properties of the starch dispersed in anhydrous 
lanolin were determined with a mechanical spectrometer, equipped with 
50-mm cone and plate text fixtures6. Samples were oscillated sinusoidally by 
the output of a digital function generator and phase analyzer7. Temperature 
was controlled by enclosing the mounted sample in an environmental cham- 
bers. A functional description of the apparatus, procedures for maintaining 
sample temperature and calculating the dynamic moduli, and data repro- 
ducibility have been previously given (7.28). 

Sample Preparation-Dispersions were prepared in 30-g lots. To prepare 
the dispersions, the appropriate weighed amounts of anhydrous lanolin and 
desiccator-dried starch were manually levigated together using a spatula and 
ointment tile. When the starch particles appeared to be completely coated, 
the mixture was transferred to a beaker and placed into a water bath at 50°C. 
After melting, the molten mixtures were gently stirred and placed into a 
desiccator. The desiccator was then evacuated by a filter pump, which acted 
to pull entrapped air from the molten mixtures. Deaerated samples were then 
gently stirred and poured onto the flat test fixture, while preventing air pccket 
formation. After 30 min at  room temperature, the plate was mounted and the 
cone lowered to the preset gap. The extruded material was removed, and the 
sample was allowed to equilibrate at the test temperature for 15 min. Dis- 
persions were made that contained the following volume fractions of starch 
(452): 0.0295,0.0604,0.126,0.198,0.278,0.366, and 0.414. 

Description of Experiments-Samples were tested at  0 ° C  5 ° C  10°C, 
15OC, 20”C, 25”C, and 30°C. At each T, all samples were oscillated over three 
decades of v, 0.01-10.0 Hz, a t  a shear strain (y) of 3.54%. T h e y  of 3.54% was 
the lowest obtainable strain with the equipment used (7). The moduli, G’and 
G”, and damping, tan 6, are calculated as a function of u, T, and 42.  In addi- 
tion, photomicrographs9 of thin poured films of the dispersions were taken 
to gain insight into the morphology of the dispersions. 

RESULTS AND DISCUSSION 

Kerner Equation Predictions-As previously discussed, many empirically 
derived equations are used to predict the viscoelastic behavior of powder-filled 

Ruger Chemical Co., Irvington-on-Hudson, N.Y. 
J. T. Baker Chemical Co., Phillipsburg, N.J. 
Model RMS-7200; Rheometrics, Inc., Union, N.J. ’ Mcdel SA-2200; Rheometrics, Inc., Union, N.J. * Model EC-1000; Rheometrics, Inc.. Union, N.J. 
OIympus BH. 

Figure 3-Effect of temperature on the loss tangent 
of starch-filled anhydrous lanolin USP, at 41 equal 
to 0.802 ( A )  and 0.586 (B), and 3.54% strain. Key: 
(0) 0.0464 Hz; (m) 0.10 Hz: (+) 0.215 Hz; (0) 
0.464 Hz; (A) 1.0 Hz. (A) 2.15 Hz: (0)  4.64 Hz. 

polymeric systems. Most of these equations are  similar, but Kerner’s equation 
is most useful (Eq. 5). For dispersions which undergo dynamic mechanical 
testing, the Kerner equation takes on the form: 

where G‘ is the elastic modulus of the dispersion, G’I is the elastic modulus 
of the unfilled bulk phase, and 41 and 4 2  are the volume fractions of the bulk 
phase and filler, respectively. It generally holds when there is adhesion between 
the phases and the dispersed particles are nearly spherical. If Poisson’s ratio, 
~ 1 ,  equals 0.5, then the slope of the line predicted by a plot of [(G’/G’l) - 11 
versus (452/451) is 2.5. 

Deviations from a slope of 2.5 suggest that one or more assumptions on 
which the equation is based do not hold. For example, slopes of >2.5 could 
be due to strong interactions between particles, which causes an increase in 
elastic structure. In contrast, slopes of <2.5 could be caused by slippage at 
the particle-bulk phase interface, which gives an apparent loss in elastic 
structure. Other deviations from a slope of 2.5 could be due to irregularities 
in the shapes of the particles or variations in @I .  

Experimentally determined elastic moduli, G‘, of starch-filled anhydrous 
lanolin dispersions are plotted on Kerner axes for three test frequencies, 0.0464, 
0.464, and 4.64 Hz, in Fig. I .  These frequencies are representative of the three 
decades of shear frequency examined in these experiments. For comparison, 
a line equal to the “ideal” Kerner equation prediction (slope = 2.5) is presented 
in each plot. 

An examination of the plots shows that at temperatures l lO°C,  an increase 
in 4 2  and Y causes an increase in G‘, up to a $2 of -0.4. The plots also show 
that the effects of 42 on G‘ are  enhanced as  T and v increase. An increase in 
G‘occurs with increasing u because the molecules of anhydrous lanolin do not 
have time to rearrange themselves within the time frame of straining. 

An increase in G’ with increasing Tcan also be explained in terms of particle 
interaction with anhydrous lanolin. The starch particles tie up anhydrous 
lanolin molecules by adhesion, thereby providing a more elastic structure. At 
T = OOC, G’ of the disperse systems do not change with u and 42. Each dis- 
persion has the same limiting elastic modulus, GE, as unfilled anhydrous 
lanolin. The modulus contribution of the starch to the modulus of the dis- 
persion is apparently shielded by the “frozen” structure of the anhydrous 
lanolin phase. The shielding action may result from a fluid component of the 
anhydrous lanolin, or air, adsorbing on the surface of the starch particles. 

An increase in G‘ would also be expected from increasing particle-particle 
contact. A representative photomicrograph of a starch-filled anhydrous lanolin 

Table I-Experimentally Determined Loss Tangents of Unfilled Anhydrous 
Lanolin USP at 3.54% Strain 

Shear (G “ / c ‘ ) , 
Frequency, Unfilled Anhydrous Lanolin“ 

Hz 0°C 10°C 20°C 

0.0464 0.0478 2.67 0.785 
0.100 0.0337 2.20 0.827 
0.21s 0.0247 1.63 0.884 
0.464 0.0220 1.09 0.985 
1 .oo 0.01 18 0.613 1.13 
2.15 0.01 39 0.184 1.32 
4.64 0.0101 0.07 5 1.49 

0 6 ,  equals 1 .OO. 
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Table 11-Theoreticellv Predicted and ExDerimentallv Determined Loss Tangents of Starch-Filled Anhvdrous Lanolin USP at  3.54% Strain 

(G”/G’)  I *@ I 
Shear Starch-Filled Anhydrous Lanolin‘ 

Frequency , ooc I O O C  2O0C 
Hz Theoryb Exp.< Theory Exp. Theory Exp. 

0.0464 
0. I00 
0.215 
0.464 
I .oo 
2.15 
4.64 

0.0383 
0.0270 
0.01 98 
0.0 I 76 
0.00946 
0.01 11 
0.008 10 

0.04411 2.14 3.30 0.630 1.08 
0.0399 1.76 2.41 0.663 1.01 
0.0348 I .30 1.62 0.709 1.08 
0.0540 0.874 0.969 0.790 1.16 
0.03 I0 0.492 0.5 I7 0.906 1.30 
0.0358 0.148 0.208 1.05 1.48 
0.0559 0.060 0.09 1 1.19 I .64 

@, equals 0.802. Calculated using I:q 7 and data in Table 1 .  Experlmcntally determined 

dispersion shows a packed network of starch particles (Fig. 2 ) .  Two physical 
mechanisms c a n  be postulated to explain the increase in G‘ from increasing 
particle-particle contact. The first is a phenomenon known as bridging. 
Bridging occurs when the ends of molecules in the disperse phase interact with 
the surfaces of suspended particles, linking different particles together. As 
the volume fraction of starch increases, particle density and the probability 
of particle -particle contact increase. Therefore, it is probable that anhydrous 
lanolin molecules will bridge more particles, provide more structure. and in-  
crease G“ because the particles are generally closer to one another. This phe- 
nomenon is well illustrated by the interaction of rubber with suspended par- 
ticles of carbon black (29). 

The second mechanism that could cause an increase in G’with increasing 
particle-particle contact is volumetric dilation. As particle density increases. 
suspended particles are forced past one another during shear. In the process, 
therc is a dilation in the volume of the dispersion. Resistance to volumetric 
dilation appears as an increase in G’. The degree of dilation and resultant 
increase in G’ is, therefore, proportional to $2.  This postulate is supported by 
the Kerner equation (Eq. 6). I n  this equation, pI compensates for changes in 
volumc of the matrix phase. When there is no change in volume, @ I  = 0.5, but 
when volumetric dilation occurs, decreases). Therefore, a decrease in PI 
would be reflected as an increase in  G‘. 

The Kcrner equation has proved beneficial for postulating a general 
mechanism for the influence of starch particles on the elastic modulus of 
dispersions of starch in anhydrous lanolin, but it must be emphasized that the 
“ideal” Kerncr prediction does not correlate with experimentally determined 
moduli at all v and T. Asevidenced by Fig. I ,  the“idea1” Kerner prediction 
is approximated only at v 2 0.464 Hz and T = 3OOC. One would intuitively 
expect v and T to affect G‘/G’l because of their demonstrated influence on 
the viscoelastic properties of anhydrous lanolin. The shapes of the Kerner plots 
presented in this study may be due to nonlinear viscoelastic behavior. Non- 
linear behavior results from testing at strains in excess of that necessary for 
linear viscoelasticity. The effects of v and T o n  G’ will subsequently be dis- 
cussed further in  this report. To further study the effects of powdered starch 
on the viscoelastic properties of anhydrous lanolin, i t  was decided to examine 
energy dissipation (7) by measuring damping, tan 6, as a function of volume 
fraction. 

Energy Dissipation Considerations----Like the Kerner equation. the ratio 
of G” to G’, tan 6, is also an indicator of structural changes. To illustrate, the 
damping curves for the two volume fractions of starch used i n  these experi- 
ments. 0.19X and 0.414 (@I = 0.802 and 0.586, respectively), arc presented 
in  Fig. 3. When the shapes of these curves are compared with those of unfilled 
anhydrous lanolin in Fig. 4. noticeable differences occur a t  OOC, 5°C. IOOC.  
and 2OOC. Essentially, at these temperatures the range of tan d obtained from 
4.64 to 0.464 Hz is narrower for the starch-filled anhydrous lanolin dispersions, 
which indicates that the internal structure created by the starch tends to 
dominate the contribution of the anhydrous lanolin. 

Changes in  the dynamic mechanical properties of polymers as a function 
of 92 are often most evident in damping (30). The change in tan d of solid-filled 
polymers can be approximated by a volume averaging relation (31, 32): 

( G ” / G ’ )  = (G“/G’)l - @ I  + (G”/G’)2 * @2 (Eq. 7) 

where ( P I G ’ )  = tan 6, the damping of the filled polymer; (G”/G’)l and 
(G”/G“)2 are the damping of the pure polymer and pure filler. respectively; 
and @ I  and dq are the volume fractions of the pure plymer.and pure filler, 
respectively. Since the damping of most rigid fillers is very small compared 
with that of the polymeric bulk phase, the term (G”/G’)2.@2 is almost zero 
and can be neglected. 

Experimentally determined damping values of unfilled anhydrous lanolin, 
at OOC, I O O C .  and 2OoC, are given in Table I .  These data represent three 
temperaturc ranges where anhydrous lanolin is in three different viscoelastic 
states (7). The glassy state of anhydrous lanolin is represented by O O C .  while 

10°C is within the transition zone from a glassy to a rubbery state, and 2OoC 
is within the region just beyond the transition zone. In Tables I1 and 111, 
theoretical and experimentally determined damping values of two starch-filled 
anhydrous lanolin dispersions, @I = 0.802 and 0.586, respectively, are  given. 
The theoretically predicted values were calculated by substituting the values 
from Table I into Eq. 7. 

I t  is apparent that predicted damping does not equal that determined ex- 
perimentally. In Table 11, where @ I  = 0.802, it can be seen that the presence 
of starch increases damping over the temperature range of O-2O0C and over 
the entire test frequency range. The increases are probably caused by newly 
introduced damping mechanisms that are not present in  anhydrous lanolin 
alone. The new damping mechanisms may include ( a )  particle-particle fric- 
tion, where particles touch each other as in weak agglomeration, ( b )  parti- 
cle-anhydrous lanolin friction, where there is little or no adhesion at  the in- 
terface, and (c) excess damping in  anhydrous lanolin near the interface be- 
cause of induced thermal stresses or changes in anhydrous lanolin molecular 
conformation. Each of thcse mechanisms cause. the elastic modulus todecrease 
and the viscous modulus to increase, which both independently give higher 
damping. An increase in damping indicates that these damping mechanisms 
cause an increase in energy dissipation during deformation of the disper- 
sion. 

In Table I l l ,  where @ I  = 0.586, the presence of starch increases or decreases 
damping of anhydrous lanolin depending on the temperature. At O°C, where 
anhydrous lanolin exists in  the glassy state, the experimentally determined 
damping of this dispersion is lower than that predicted by Eq. 7. AI 10:. where 
anhydrous lanolin is in the transition zone from a glassy to a rubbery state, 
results are mixed. At low v ,  experimental results are higher, while at higher 
v experimental results are lower. At 2OoC, a temperature just above the 
transition zone, experimcntal results are higher at all v. Damping values lower 
than those predicted by Eq. 7 can be explained in terms of particle-particle 
interactions and particle-bulk phase interactions that result in a structure that 
is not easily deformed or broken by applied stress. These interactions result 
in increased elasticity and a consequent increase in G‘. The viscous modulus, 
G ” ,  also increases but not as greatly as  the rate of increase in G’. Hence, the 
net result of changes in G‘and G” is a lower tan d (the ratio of G” to G’). 

For dispersions of starch in anhydrous lanolin, it would be appropriate to 
modify Eq. 7 to the form: 

(G”‘/G’) = (G”/G’)I - @ I  + (G”/G’)2.  (b2 + Interaction Term (Eq. 8 )  

’o‘ol 
0 I . I I I I / .  

0 5 10 15 20 25 30 
lemperoture, “C 

Figure 4-Effect of temperature on the loss rangent of unfilled anhydrous 
lanolin LISP, at 3.54% strain. Key: (0) 0.0464 Hz; (8 )  0.10 Hz; (*) 0.215 
Hz;  (@) 0.464 Hz;  (A) 1.0 Hz; (A) 2.15 Hr (0) 4.64 Hz .  
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Table 111-Theoreticallv Predicted and ExDerimentallv Determined Loss Tangents of Starch-Filled Anhvdrous Lanolin USP a t  3.54% Strain 

(G“/G‘) 1.41 
Shear Starch-Filled Anhydrous Lanolin“ 

Frequency, ooc 10°C 200c 
Hz Theory Exp.= Theory Exp. Theory Exp. 

0.0464 
0.100 
0.215 
0.464 
1 .oo 
2.15 
4.64 

0.0285 
0.0201 
0.0147 
0.0131 
0.00703 
0.00828 
0.00602 

0.00681 
0.00797 
0.00677 
0.00294 
0.00498 
0.00288 
0.00291 

1.59 
1.31 
0.971 
0.650 
0.365 
0.1 10 
0.0447 

2.25 
1.58 
0.964 
0.508 
0.207 
0.0370 
0.0128 

0.468 1.34 
0.493 1.28 
0.527 1.27 
0.587 1.30 
0.673 1.38 
0.787 1.56 
0.888 1.68 

a QI equals 0.586. Calculated using Eq. 7 and data in Table 1. Experimentally determined. 

where the interaction term accounts for deviations from idealized behavior. 
The interaction term would be negative when experimentally observed 
damping is lower than that predicted by Eq. 7. Conversely, the interaction 
term would be positive when experimentally observed damping is higher than 
that predicted by Eq. 7. 

As previously mentioned, Figs. 3 and 4 illustrate the relationships between 
tan 6, T, and 42 for starch-filled and unfilled anhydrous lanolin. A comparison 
of Fig. 3 to Fig. 4 shows the maxima in the damping curves at the lowest u all 
occur at IOOC. Overall, there appears to be no significant difference between 
Fig. 4 and Fig. 3A. This is a good indication that starch, up to 42 = 0.198, does 
not shift the mechanical transition temperature (analog of T,) of anhydrous 
lanolin. There also appears to be no significant shift in the crossover region 
of the damping curves. But when $2 reaches 0.414, there is a significant dif- 
ference in appearance in the damping curves, as evidenced by a comparison 
of Figs. 4 and 38.  Even though the damping curve generated by a u of 0.0464 
Hz has its maximum at 10°C, its magnitude has been reduced, as is also the 
case at each u at 5 10°C. At > 10°C, the curves are closer together and most 
noticeably, the crossover region has shifted from 1 7 O C  to-20°C. These plots 
suggest that the degree of influence on the transition temperature of anhydrous 
lanolin is proportional to the volume fraction of starch. 

CONCLUSION 

Dynamic mechanical testing has been shown to be a sensitive tool to examine 
the effects of a powdered filler on the viscoelastic properties of a pharma- 
ceutical semisolid. Viscoelastic parameters give insight into fine structural 
changes of the dispersions that cannot be observed with conventional steady 
shear rheometers. Even though the widely used Kerner equation was unable 
to predict the elastic moduli of starch-filled anhydrous lanolin dispersions at  
all u, T ,  and 42, it did prove useful in postulating mechanisms of interaction 
between the filler and the bulk phase. One probable reason for the limited 
applicability of the Kerner equation is the nonlinear viscoelastic effects caused 
by the introduction of starch into anhydrous lanolin. It must be noted, however, 
that damping was an effective indicator of the degree of influence starch had 
on the mechanical transition of anhydrous lanolin from the rubbery state to 
the glassy state. 

APPENDIX. Glossary 

G = shear modulus (dyne cm2 or Pa: N m2) 
GI = shear modulus of the unfilled matrix phase 
G’ = dynamic shear storage modulus (same units as G) 

G” = dynamic shear loss modulus (same units as G) 
GE = limiting value of G‘ 

Vo = original volume of test specimen 
A V  = change in volume of specimen 
Tg = glass transition temperature 
k ,  = Einstein coefficient 

e = tensile force 
m = exponent of shear rate in Cross equation 
6 = phase angle between stress and strain vectors 
y = strain 
i. = rate of strain 
q = shear viscosity (Poise: dyne s 

qo = shear viscosity at zero shear rate 
~1 = shear viscosity of the suspending media 

q- = shear viscosity at very high shear rates 

pl = Poisson’s ratio of the bulk phase 

T = temperature 

or Pascal seconds: N s m-2) 

= Poisson’s ratio (dimensionless) 

$1 = volume fraction of bulk phase 
42 = volume fraction of dispersed phase 
b,,, = volume fraction of maximally packed particles 

u = shear frequency (Hz) 
fl = constant in the Cross equation 
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